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In this case k R ~ + l R r = k + !  so that (A.4) may be 
simplified to 

1 
(EhEkE' ) - (Neq) l /Zpr  ( e h e k e , ) l / 2 E " e x p [ i A s ' r ] "  ( a . 5 )  

According to (5) the expected value of qb= 
~oh+ ~0k+ ~01 is then defined by 

tan Ay = (Y" sin As.r)/(Y" COS A ) =  T~ B 

where As,, = +27r(kTs+lTr) .  Accordingly, the relia- 
bility parameter of the phase estimate is given by 

G ' - 2 ] Eh Ek EI 1 
]~r ~ 1 / 2  I/2(TZ+B2) ~/2 (A.6) 

(- .oq,pr (ehEke,) 

Finally, the conditional probability distribution of q~ 
given IEhl, led,  IE, I in any space group and for any 
triple (h, k, !) is given by 

P( ~llEhEkE, I) 

=[27rlo(G')]exp[G' cos ( ~ -  A/)]. (A.7) 

Even if explicitly obtained for non-centric phase trip- 
lets, these results are easily extended to any kind of 

triplet with three-phase restricted structure factors. 
Indeed, the expected value of q~ will always be 
defined by tan A f :  a hyperbolic tangent expression 
can then define which of the two allowed phase values 
is more probable (see § 2). 
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Abstract 

An analysis is presented of the angular distribution 
of reflections in Laue diffraction, with particular 
application to the spatial overlap problem in syn- 

t Present address: Department of Biochemistry and Molecular 
Biology, University of Chicago, 920 E 58th Street, Chicago, 
IL 60637, USA. 

chrotron macromolecular crystallography. Spatial 
overlaps of spots on the detector occur when the 
angular separations of adjacent diffracted beams are 
very small. The maximum density of spots occurs at 
0c = sin -~ (AminD*/2) and the majority of spots in this 
region of 0 have short wavelengths. At higher 0 the 
mean wavelength increases steadily. On a flat detector 
the spots of a Laue pattern lie on intersecting conics. 
Each conic corresponds to a zone plane of reciprocal- 
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lattice points (RLPs), whose zone axis is represented 
by a point uvw in the direct lattice. If P[uvw] is the 
distance of uvw from the origin and ~b is the angle 
between the zone axis and the incident beam, then 
the average spacing between spots on a conic is pro- 
portional to P sin ~ and the width of the clear gap 
bordering a conic is proportional to l /P .  This explains 
why the densest conic arcs are flanked by the larger 
clear spaces and shows that local spatial overlap 
problems are inherently one dimensional in character. 
The vast majority of small angular separations are 
associated with pairs of adjacent single-order reflec- 
tions. Multiples have larger separations from their 
nearest neighbours, which are always singles. The 
detailed analysis shows the factors that govern the 
spatial overlap of spots and indicates tactics for 
experimental design. The analysis is also relevant to 
polychromatic neutron diffraction. 

I. Introduction 

1.1. Background 

The availability of synchrotron X-ray sources has 
renewed interest in the Laue diffraction method. The 
method makes optimum use of the polychromatic 
radiation spectrum and permits very brief exposures, 
even for weakly scattering crystals. 

We earlier considered the multiplicity distribution 
of reflections in Laue diffraction (Cruickshank, 
Helliwell & Moffat, 1987, hereafter CHM1). When a 
crystal is illuminated by a polychromatic beam of 
X-rays, many orders of each Bragg reflection may be 
stimulated simultaneously and overlap exactly in 
scattering angle. It might be thought (Wyckoff, 1924, 
p. 142; Bragg, 1975, p. 137; Amor6s, Buerger & 
Amor6s, 1975, p. 13) that, with a wide wavelength 
range, few Laue reflections would be single: most 
would be multiple, arising from several orders. We 
showed that this fear was unjustified and that in 
typical situations the proportion of reciprocal-lattice 
points that lie on single rays always exceeds 83%. 

There is another complexity of the Laue method 
which is of a geometrical nature. This is the so-called 
spatial overlap problem (Helliwell, 1985): the angular 
separation between diffracted beams can be so small 
that, because of their finite size, they lead to over- 
lapped spots on the detector. In an initial example 
of a protein Laue diffraction pattern considered by 
Helliwell (1985), the number of spatial overlaps was 
comparable with the number of multiple-order energy 
overlaps. It is evident from simulations that as the 
unit-cell size is increased, for example to that typical 
for a virus crystal, the number of spatial overlaps 
considerably exceeds the number of energy over- 
laps. At the other extreme, for example small- 
molecule crystals, the number of spatial overlaps is 
negligible. 

The spatial overlap problem is, therefore, not as 
general an obstacle as the energy overlap problem 
once appeared to be. In monochromatic methods, 
spatially overlapped spots are carefully prevented 
from occurring, either by restricting the oscillation 
angle in the rotation method or by simultaneously 
translating the film as in the Weissenberg method. 
Clearly if the Laue method is to be applied to very 
large unit cells for quantitative structure analysis, 
efforts have to be made to diminish the spatial overlap 
problem. 

There are three obvious possibilities: move the 
detector further back; introduce computational 
spatial deconvolution procedures; restrict the 
wavelength range. Whether considering these or 
more novel detection schemes, it is important to 
understand clearly the geometric properties of Laue 
patterns. 

We began the present work from a need to under- 
stand the spatial overlap problem. However, this 
paper covers a wider field and is a general analysis 
of the angular distribution of spots in Laue patterns 
and the way in which the angular distribution depends 
on various experimental parameters. The analysis 
presented builds on CHM1 explicitly. Hence, in the 
next subsection we recapitulate some points from 
CHMI.  In § 2 we describe the general appearance of 
Laue patterns from crystals with larger unit cells. A 
treatment is given in § 3 of the two-dimensional 
density of spots on the detector; this is based on the 
mapping of the accessible volume of reciprocal space 
on to the detector. The discussion is then extended 
to consider the wavelength distribution on any small 
area of the detector. 

In terms of spatial resolution, the coarse two- 
dimensional density does not identify the most serious 
aspect of the problem of the angular proximity of 
spots. Along the arcs approaching multiple reflections 
(nodals), the spots can approach each other very 
closely. That is, the problem is inherently one 
dimensional in nature. Around the nodals themselves, 
there are relatively large clear gaps. A qualitative 
description of the clear gaps in Laue patterns and of 
the arrangement of spots along arcs has been given 
by Jeffrey (1958). We analyse the effects quantita- 
tively. This analysis is considerably more involved 
and far reaching than that for the coarse two- 
dimensional distribution and so extends from §4 
through to § 8. For example, we derive expressions 
for the minimum possible as well as the average 
separation between beams in a given zone (§ 7). We 
note here that there is an optimum crystal-to-plate 
distance: improved spatial resolution offered by 
increasing the distance is eventually counter-produc- 
tive because of the loss of reflections that then pass 
outside the plate. Finally, we consider the prac- 
tical implications with novel experimental schemes 
i n § 8 .  
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1.2. Recapitulation 

We summarize some points and nomenclature from 
CHM1. For a stationary crystal and white radiation, 
the accessible region of reciprocal space is considered 
to lie between the Ewald spheres of radii 1/Ama x and 
l /Ami  n. There is also a sample resolution limit D * =  
drnax = 1 /dmi  n represented by a sphere of radius D* 
centred at the origin. The accessible region of 
reciprocal space, which is cylindrically symmetrical 
about the incident X-ray beam, may be further limited 
by experimental restrictions, such as plate size, thus 
causing a 0 cut with maximum acceptance angle 0~c~. 

A ray is a central line in reciprocal space from 
(0,0 ,0)  passing through the RLPs h=(h ,k , l ) ,  
2h, 3 h , . . . ,  n h , . . . .  Provided the lattice is primitive 
and the greatest common divisor of h, k, l is 1, then 
h is the innerpoint of the ray. nh is the nth-orderpoint 
or nth harmonic. A ray of multiplicity m is one con- 
taining m points inside or on the surfaces of the 
accessible region. 

CHM1 showed the probability that a RLP, ran- 
domly chosen in three dimensions, is an inner point 
is 

Q=(1-1 /23 ) (1 -1 /33 ) (1 -1 /53 ) . . .=0 .832 .  (1.1) 

If the stimulated region has volume VR and V* is 
the volume of the reciprocal unit cell, then for VR ~> 
V* the number of RLPs in VR is approximately N = 
VR/V* and the number of inner points in VR is 
approximately QN = QVR/ V*. 

The volume of the accessible region defined by D*, 
hm~x and h,~m is 

VR=('lr/4) D*4(,~.max-,~.min). (1.2) 

We distinguish between Laue reflections and Bragg 
reflections. A Bragg reflection arises from a particular 
order. A Laue reflection, corresponding to a spot on 
the detector, may arise from the superposition of 
several Bragg reflections generated by the accessible 
RLPs along a single ray. 

2. General features of Laue patterns 

Fig. l ( a )  shows a computer simulation of a flat-plate 
Laue pattern for the protein pea lectin (PL30 ° 
orientation). The spots are arranged in families of 
intersecting conic arcs (ellipses or hyperbolae). Some 
conics stand out to the eye because they have a high 
density of spots and are bordered by clear strips. 
These conics relate to zone axes of low indices. Two 
or more such conics intersect at spots which stand 
out in the centre of small clear areas. These spots are 
nodals, that is, spots of low inner indices and often 
of high multiplicity. Thus, in Fig. l (a ) ,  spot a is the 
12.1 nodal, actually of multi__plicity fi___ve, corresponding 
to the Bragg reflections 5,10,5; 6,12,6; 7,14,7; 8,16,8; 

9,18,9. Spot b is the 0]-1 nodal, c is 01_ ~, d is 112, e 
is 112, f is 201, g is 201 and h is 2.10. The hyperbola 
through f, 0 and g corresponds to the zone [010], so 
that the spots on it are of type hOl. Because of the 
crystal setting, the hyperbola for the [100] zone is a 
straight line passing through b, 0 and c and the spots 
on it are of type Okl. The small ellipse through 0 and 
b with very closely spaced spots corresponds to the 
zone [011], and the spots on it are of type hk~ 

If the crystal is oriented with a principal plane of 
the reciprocal lattice, say k = 0, perpendicular to the 
incident beam, then the Laue pattern has a clear area 
around the centre because the principal plane is 
tangential at the origin to every Ewald sphere (Henry, 
Lipson & Wooster, 1951). The spots with lowest 0 
then correspond to the intersections of the plane k = 1 
(or -1 )  with the Ewald spheres. In a pattern such as 
Fig. 2 where the incident beam is along b [pea lectin 
(PL) 90 ° orientation], the central area is clear because 
the k = 0  plane is tangential to the Ewaid spheres. 
The first group of spots outside the circular clear 
region is due to k = 1; the next apparent circle in the 
distribution marks the arrival of the k = 2 spots and 
the next the arrival of the k = 3 spots. These circular 
density effects are particularly obvious in Fig. 2 
because there is a big difference between the ortho- 
rhombic reciprocal axes a*=0.01971 and c*=  
0.00732 A ~. This difference is also the reason why 
only conics for [hk0] zones are visually apparent and 
not those for [Ok/] zones. 

For given reciprocal-cell dimensions, the number 
of spatial overlaps in a pattern obviously depends on 
the crystal-to-plate distance and the spot centre-to- 
centre acceptance limit. The effect of reducing the 
crystal-to-plate distance from the 95 mm of Fig. l ( a )  
to 64 and 34 mm is shown in Figs. l (b)  and (c). The 
overcrowding increases dramatically. If the patterns 
are viewed from a distance so that details of individual 
conics are lost, it appears, and will be confirmed 
theoretically in § 3, that the number density of spots 
per unit area of plate increases fairly rapidly from 
the centre to a maximum at a certain 0 and then 
decreases slowly towards the edge of the plate. 

It is also apparent that the number density of spots 
per unit arc length is very high in some of the conics, 
even at the 95 mm crystal-to-plate distance. The [011 ] 
ellipse in Fig. l ( a )  has already been pointed out. 

3. Statistics of the radial distribution of  reflections 

3.1. RLP distribution 

We now consider the coarse two-dimensional 
features of the statistical distribution of reflections in 
a Laue pattern and we start by examining the number 
of RLPs mapped per unit. area of detector. Evidently 
this depends on the volume of reciprocal space 
mapped onto the detector. 
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In Fig. 3 let a central line from the reciprocal origin 
O intercept the internal surface Si of  the accessible 
region at I and the external surface Se (Amen or D* 
spheres) at E. The angle between this central line and 
the tangent plane at O is 0. If 0,. defines the intersec- 
tion of  the Ami n and D* spheres and 0,, defines the 
intersection of  the Amax and D* spheres, 

0c = s in- '  ( A m i n D * / 2 ) ,  0,, = sin-'  ( A m a x D * / 2 ) .  

From Fig. 3 we see immediately  that IE lengthens 
as 0 increases from 0 to 0c and then decreases as 0 
increases towards 0,1. We shall thus not be surprised 
if the algebraic analysis shows that the area density 

of  RLPs on the detector reaches a max imum when 
0 = 0c. 

If ~o is the azimuthal angle about the incident-beam 
direction, a volume e lement  of  reciprocal space is 
given by 

dd*d* dO d* cos 0 d~o, 

where d* is the distance from the origin. By integra- 
tion in d*, the accessible vo lume of  reciprocal space 
bounded between 0, 0 + d 0  and ~o, ~0+d~  is 

p*( O, ~o) dO d~ =S d*2dd* cos 0 dO d~  

= (1 /3 ) (d~  . 3 -  d .3) cos 0 dO d~o. 

(3.1) 
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Fig. 1. C o m p u t e r  s i m u l a t i o n s  o f  Laue  patterns for pea  lect in .  

PL 30 ° o r i e n t a t i o n ,  i n c i d e n t  b e a m  30 ° to e and p e r p e n d i c u l a r  to 

a. Crys ta l - to -p la te  d i s tances :  ( a )  95 m m ,  (b )  64 m m ,  (c)  34 mm.  
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This volume of  reciprocal  space is mapped  onto 
the detector  at scattering angles between 20 and 20 + 
d(20) and in the same azimuthal  range ~, ~ + d ¢ .  
Cons ider  a p lanar  detector  normal  to the incident  
beam with crystal-to-plate distance CF. The  area of  
the small piece of  the circular annulus  on the detector  
between 20 and 2 0 + d ( 2 0 )  and ~0 to ~0+d~0 is 

[ ( C F / c o s  2 20)d(20)] [  C F  tan 20 d~o], 

since the detector  element  is at distances C F / c o s  20 
from the crystal and C F t a n  20 from the incident-  

: - -  -, 

,, L • • . , .,i•. - '  _ .. ~. , . 
. .  ; . . . : . . . . .  ', . ; 

.,..,, , :,,÷;.?-:--.~:.%:,_ _ _  _ , 
E I 

- .  -. , . ~..~:.~" :: . . 
• , .~, ,// \.\, .. , . - 

• ... .. , ,, ,//: . .. 
• . . .:~, ,\, ',/, ,:; . 

. . . . . . .  

• " " • ":5, "'/; C.'" <.~'" _" .- -.... 
. . . .  " -'.'~ ':, i~' +, " 

- . ',.,' :,\~ .... ,/,. ~, " [2101 
- . , . . . .  !,, -.-:::-.-.,,! ..... . - 

' '. "',\N:... _~ . . i : ; / 1 / :  .' 

. . . .  1110] 

. [1~1.  " 
11201 

• I !3o] . .  - 

Fig. 2. Computer simulation of Laue pattern for pea lectin. PL 90 ° 
orientation, incident beam along b. Crystal-to-plate distance: 
95 mm. 

beam axis and the element  is incl ined to the diffraction 
direction. 

If  we divide p*(O, ~o) dO d~o by this area, we obtain 
the volume of  reciprocal  space mapped  per unit  area 
of  the detector.  If  we divide further  by V*, effectively 
assuming an averaged or ienta t ion  of  the crystal, we 
obtain the number  of  RLPs mapped  per unit  area of  
the detector  as 

1 1 cos 3 2 0 
C F  2 12V * [ d * a - d * 3 l - s i n  0 (3.2) 

For 0 < 0c, d* = 2 sin 0/Amin and d* = 2 sin 0/Amax, 
SO that  the RLP number  density varies as 
sin 2 0 cos 3 20. For small 0 the density varies as 02 and 
as 0 increases the density reaches a maximum with 
a cusp at 0 =  0c [unless, exceptional ly,  0c> 
s in- '  ( 1 / 2 x 2 ' / 2 ) = 2 0 . 7  °, in which case the factor 
s in20 cos 320 reaches a maximum for 0 <  0c]. For 
0 > 0¢, d* = D* but d* cont inues  to increase. In con- 
sequence the density falls steadily to zero as 0 
increases from 0~ towards 0,,. Fig. 4 shows an example 
of  the density as a funct ion  of  0. (If  0,1 > 45 ° back 
reflections are possible and the number  density on 
an infinite normal  plate will be zero for 20 = 90°.) 

3.2. Laue  reflection distribution 

The number  density for the mapping  of  rays, that  
is the number  of  Laue reflections or spots per unit  
area, will be lower than for RLPs because some reflec- 
t ions will be multiple. Calcula t ions  for the number  
of  rays can be handled  by the methods of  CHM1.  As 
earlier, the accessible region is considered to be 
bounded  by an external surface Se and an internal  
surface S~. As in Fig. 3, any ray cuts S~ at distance 
d* and Se at distance d* .  Suppose the inner  point  h 
of  this ray has reciprocal radius d* .  If d* -> d* -> d* ,  

I/• , .  sphere 

D * s l ~ e ~  

X- ray  beam 

Fig. 3. Accessible region of reciprocal space. Only the upper sec- 
tion of the volume of revolution is shown. The internal surface 
Si involves the 1/Amax sphere. The external surface Se involves 
the D* and 1/Ami, spheres. The central line OIE has 0I  = d* 
and OE = d*. 

R L P  D E N S I T Y  ~ ~ - _ _ _ 

1 2 3 ~ 5 6 

8/e c 

F i g .  4 .  D e t e c t o r  R L P  a r e a  d e n s i t y  ( c o n t i n u o u s  c u r v e )  a n d  m e a n  
w a v e l e n g t h  ( ' ~ ) / ' ~ ' m i n  ( - - - )  a s  f u n c t i o n s  o f  0 .  T h e  p a r a m e t e r s  

used are Amax/Amin=6 and AmmD*=0.12, so that 0c = 
sin -I (0.12/2) = 3.44 ° and 0,1 = sin -I (0.72/2) = 21.10 °= 6-130c. 
The RLP density function plotted is proportional to 
sin 20cos320(A3-1/216), where A= 1 for 0<O,. and A= 
0.06/sin 0 for 0 > 0,.. 
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the ray will be accessible and will give rise to a Laue 
reflection. 

If d * < d * ,  the higher orders of h will have 
reciprocal radii 2d*, 3 d * , . . .  and one or more of 
these orders may lie in the accessible region and so 
give rise to a Laue reflection. If also d* >-2d*, we 
can be certain that at least one order lies in the 
accessible region, for the spacing between orders is 
d* which is less than the width d * -  d* of the acces- 
sible region. 

Thus for regions in which the relation between the 
surfaces Se and Si satisfies d* -> 2d* on every ray, the 
number of accessible rays can be calculated from the 
shape of the external surface alone. This number is 
simply the number of inner points within Se, viz 
QV*/V* ,  where V* is the volume defined by the 
origin and the appropriate region of the external 
surface. 

Consequently, by comparison with (3.2) the num- 
ber of Laue reflections per unit area of a planar 
detector is 

1 Q .3 cos3 20 
CF 2 12 V --------~ de sin 0 (3.3) 

This expression is valid where d*>_2d*, i.e. for 
X m a x / ~ m i  n ~ 2 and for 0 <- 02 = sin-'  (AmaxD*/4). 

When d* < 2d*, we may obtain a lower limit from 
the fact that the number density for Laue reflections 
is never less than Q times the number density for 
accessible RLPs. However, we can get a more precise 
estimate by comparing (3.3) for rays with (3.2) for 
RLPs at 02 where d* = D* and d* = D*/2. Corre- 
sponding to the factor Qd*~ 3 = QD .3 in (3.3), there is 
then in (3.2) a factor D*3[1-(1/2)3]=(7/8)D .3. 
Thus at 02 the ratio between rays and RLPs is 
(8/7)Q=0"951. When d * < 2 d * ,  the ratio will be 
nearer unity. Hence whenever d* < 2d*, the number 
of Laue reflections per unit area of a planar detector 
may be written 

1 q [ d .  3 _ di.3 ] cos 3 20 
CF 2 12 V* sin 0 (3.4) 

where 0.951-<q<-1-000. This estimate is surely 
adequate for most practical purposes; accurate values 
may be obtained by examination of the volumes 
V(m, n) described by CHM1. 

As with RLPs, for an averaged orientation of the 
crystal, the number density of Laue reflections per 
unit area of the detector will be maximum for 0 = G, 
where from (3.3) it has the value 

1 Q D .2 
- -  COS 3 2 G  (3.5) 

CF 2 6 V* '~'min 

and is independent of Amax- Equations (3.3) and (3.4) 
provide the explanation for the observation of § 2 
that the density rises rapidly from the centre to a 
maximum and then decreases slowly towards the edge 

of the plate. Further they show the expected, and 
practically most important, features that the density 
is everywhere inversely proportional to CF 2 and to 
V*; the maximum density is proportional to 
D * 2 / A m i n  . 

Results for spherical detectors of radius CF may 
be obtained by omitting the factor cos 320 in (3.2)- 
(3.5). 

Equation (3.4) for the number of Laue reflections 
per unit area can also be interpreted in a form useful 
for narrower band passes, i.e. when Amax < 2Amen. With 
the substitution d* = 2 sin 0/A, (3.4) becomes 

1 2q [ 1  1 ] s in20cos320  ' (3.6) 
C F 2 3 V  , ;3 A~ax 

where h = ,)kmi n for 0 -< 0c and h = 2 sin 0 /D* for 0 > 
0,.. If we compare two cases (a) ~'max = l'lhmin (q is 
then close to 1.00) and (b) A . m a x = 2 , ~ . m i n  (q=0.951),  
we note from (1.2) that the total number of RLPs for 
case (a) is only 10% of that for (b). Nevertheless 
throughout the range 0 < 0-< O, the density for (a) is 
30% of that for (b). This relative enhancement is 
because the limit 0m is much closer to 0c in case (a). 

3.3. Wavelength distribution 

What is the wavelength distribution for the reflec- 
tions appearing in a small area on the detector? Since 
reflections of multiple order involve several 
wavelengths, this question can be considered only in 
terms of the statistical distribution of wavelengths for 
RLPs. To obtain the distribution, we simply set d* = 
2 sin 0/A and d*- -2  sin 0/(A +dA) in (3.2). We then 
find, effectively for an averaged orientation of the 
crystal, that the number of RLPs with wavelengths 
in the range A, A + dA mapped per unit area of the 
detector is 

1 2 dA 
- -  - -  sin 2 0 cos 3 2 0 - -  (3.7) 
C F  2 V :~ A 4 .  

Thus, for a given value of O, the wavelength probabil- 
ity distribution is inversely proportional to A 4. The 
wavelength range is determined by the actual d* and 
d* at the given 0 and extends from Ami, or A = 
2 sin O/D*, whichever is larger, up to Amax (Fig. 5). 

We note that all RLPs with A n e a r  )kmi n are recorded 
with 0 values lying between 0 and 0c and are therefore 
found in the centre of the Laue pattern. However, 
reflections with A n e a r  /~max are recorded with all 
possible 0 values between 0 and 0,1. Nevertheless, 
the 0 range 0 to 0, records only a small fraction 
( ,~min/ /~ .max)  4 of the RLPs stimulated by Am~x. Thus, 
statistically, the central region of a Laue pattern con- 
sists predominantly of reflections stimulated by short 
wavelengths. This is illustrated, for example, by Fig. 
6 which colour codes RLPs by wavelength in a simu- 
lated diffraction pattern. 
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Table 1. The variation of  mean A and o'(A) with 0 

Fract ion L Range of  (A) tr(A ) ; t ~  d 

0 r e c o r d e d  (~max/ ,~e)  A/,~mi n ,,1~ m i n ~ m i .  ~min 

3'44 ° 0"066 6 i-6 1.47 0.60 !.26 
6"89 ° 0"328 3 2-6 2.77 0"80 2'49 

10-37 ° 0.575 2 3-6 3.86 0-74 3-63 
13.89 ° 0.788 1'5 4-6 4.74 0"55 4.62 
17.46 ° 0.940 1-2 5-6 5.44 0"28 5.41 
21-10 ° 1-000 1 (6-6) (6.00) (0) (6'00) 

Notes 
1. The  ca lcu la t ions  a s sume  A ~ , / A ~ , ~  = 6  a n d  A ~ x D *  = 0 . 7 2 .  
2. The  s econd  c o l u m n  gives the  f rac t ion  of  all accessible  RLPs which  are 
r eco rded  be tween  0 = 0 a n d  the  0 of  c o l u m n  I. 
3. The  top  line o f  the t ab le  is for 0 = 0,. = sin - t  ( A ~ i n D * / 2 )  = 3.44 °. For  any  
0 < 0,., the  range  o f  A is the same  as for  0 = 0~ ; hence  (A) a n d  A ~  d are also 
the  same.  

As a further analysis, we note that the mean 
wavelength (A) at any 0 can be calculated as 

(A)=A~(3/2)[(L~+L)/(L2+L+I)], (3.8) 

where L = , ~ m a x / ) [ e  and h e is the larger of /Ikmi n and 
2 sin O/D* (Le. h~ is the value of h on the surface 
Se). The standard deviation of the wavelength distri- 
bution is t r=  ((h~)-(h)~) ~/~, where 

(A2)=A2(3L2)/(L2+L+I). (3.9) 

The distribution is obviously skew, with median A m e  d 

less than (A) and 

~med=)~e[(2L3)/(L3-~t-1)] 1/3. ( 3 . 1 0 )  

For an example with Am~x = 6)tin{,, and Am~xD*= 
0"72, Fig. 4 and Table 1 show how (A) increases with 

0. Note that (A) lies towards the lower end of the 
local wavelength range. Also shown in Table 1 are 
tr(A), Amed and the fraction of all RLPs recorded by 
a given 0. Fig. 5 shows the wavelength probability 
distributions (3.7) at the same values of 0 as used in 
Table 1. 

Adjacent reflections of spacings d* and d* with 
nearly the same value of 0 may be stimulated by very 
different wavelengths At and A~ [see Fig. 2(c), Clifton 
etal., 1985]. Since 2 sin 01 = A~dl* and 2 sin 02 = A2d2*, 

when 0~ - 02 we have Atd* -~ A2d2*. If both reflections 
are single, then 0.5<-d*/d*<-2 and consequently 
0.5 -< A~/A~--< 2. If A2 is the shorter wavelength, Ai 
cannot exceed 2A2 .  Conversely, adjacent reflections 
may be stimulated by exactly the same wavelength 
when d* = d* and both reflections lie on the same 
Ewald sphere. 

3.4. Laue patterns further examined 

We now examine some further simulations of Laue 
patterns in the light of the preceding analysis of the 
orientation-averaged radial density distribution. 

Fig. 7 shows the Laue pattern for pea lectin when 
the incident beam is along c (PL 0 ° orientation) and 
the crystal-to-plate distance is 64 mm. The spot pat- 
tern has very approximate tetragonal symmetry as 
a*=0-01971 and b*=0-01635 ~-~ have similar 
values. Thus the families of conics for the [Ok/] and 
[h0l] zones are both visually apparent. In the inner 
part of the pattern the coarsely averaged density has 
a very rough circular symmetry and it clearly reaches 
a maximum at 0~ in accordance with (3.4). 

P ( } , )  

0=0  c = 3 . ~ / .  e 

. 

~ \ ~ - ~  

~ S 6 

) ' / ~ . w ,  

Fig. 5. Wavelength probabil i ty distributions PUt)  at various & The 
parameters  used are Am~,/Amm=6 and AmenD* =0"12,  so that 
0~ = sin -t  (0 .12/2)  = 3.44 °. Distr ibutions are shown for those 0 
where sin 0 = n sin 0¢ (n = 1 , . . . ,  5). 0 = 10.37 ° also corresponds  
to 02=s in  - t  (AmenD*/4). PUt)  is on an arbitrary scale and is 
propor t ional  to sin ~ 0 cos 3 20(Amin/A )4. 
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Fig. 7. C o m p u t e r  simulation o f  Laue pattern for pea lectin. PL 0 ° 
orientation,  incident  beam along c. Crystal- to-plate distance: 
64 ram. 
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Fig. 6. Computer simulation of Laue pattern for pea lectin, colour coded for wavelength. The spot colours progress from blue for short 
wavelengths to red for long wavelengths. Multiple-order energy-overlap spots are colour coded according to their longest-wavelength 
component. Wavelength bins have end points at (0.45 +0.31n)/~ for integer n = 0 to 7. PL 30 ° orientation and crystal-to-plate distance 
34 mm as in Fig. 1 (c). This pattern was kindly prepared by Dr P. D. Carr. 
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With the incident beam still along e (PL 0 ° orienta- 
tion), Figs. 8(a) ,  (b) and (c) for distances of  95, 64 
and 34 mm show only those spots which are involved 
in spatial overlaps, here defined as spots whose 
centre-to-centre distance is 0 - 3 5 m m  or less. The 
coarse-density maximum at 0,, can be very clearly 
seen at 34 mm, and is also apparent at 64 mm, but it 
has been lost at 95 mm. Evidently a large number of  
spots will be unmeasurable due to spatial overlaps at 
34mm.  

Table 2 shows the statistics for Laue patterns (beam 
along c) as a function of  crystal-to-plate distance 
when the plate acceptance radius is held constant at 
59.3 mm. It can be seen that the number of  RLPs 
involved in spatial overlaps (column C) rises sharply 
as the crystal-to-plate distance decreases and this 
counterbalances the more slowly rising total number 
of  RLPs (column A). Thus in the conditions exemp- 
lified by Table 2, the number of  directly measurable 
RLPs (column E) is a maximum at a distance of  
about 64 mm. 

For the 95 mm distance, where there is no obvious 
sign of  a two-dimensional  coarse-density maximum 
at 0c, it is clear from Fig. 8(a)  that the great majority 
of  overlapping spots, involving 1214 RLPs, lie along 
a relatively small number of  conic arcs. These corre- 
spond to about 30 zones o f  low indices. For the 64 mm 
distance in Fig. 7(b),  where 3758 RLPs are involved 
in spatial overlaps, the concentration along arcs is 
also evident. Careful examination of  the 34 mm dist- 
ance in Fig. 8(c),  where 10408 RLPs are involved in 
spatial overlaps, shows that these overlaps also are 
concentrated along conic arcs, albeit a much larger 
number of  conics. 

Thus the practical spatial overlap problem has a 
one-dimensional  character, that of  the linear density 
of  spots along arcs. Consequently we now turn to the 
problem of  the distribution of  spots along the arcs of  
zone conics. 

4. Zones and cones 

4.1. Background 

A central plane of  RLPs, or zone, may be defined 
by the origin and two other points (hi ,  k~, l~) and 
(h2, k2, 12). Any other RLP in this plane satisfies 

h u  + k v  + l w  = O, 

where u = k ] 1 2 - k 2 l ] ,  v = l l h 2 - 1 2 h ~ ,  w =  h ~ k 2 - h 2 k ] .  

The RLPs in this plane form a two-dimensional  net 
whose primitive cells have area A*(uvw) .  The normal 
to this net plane is the line from the origin to the 
point (u, v, w) in direct space. This is the zone axis 
[uvw].  If P[uvw]  is the distance from the origin to 
the inner point o f  the row [uvw] in direct space, then 

P[ uvw] = A*( uvw) /  V* (4.1) 
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Fig. 8. Computer simulations of Laue patterns for pea lectin, 
but showing only spots involved in spatial overlaps• PL0 ° 
orientation, incident beam along c. Crystal-to-plate distances: 
(a) 95 mm, (b) 64 ram, (c) 34 mm. 
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Table 2. The variation with crystal-to-plate distance of  the numbers of Laue spots, RLPs and overlaps 

N u m b e r  of  N u m b e r  o f  N u m b e r  o f  % o f  RLPs  
Crystal- to-  N u m b e r  o f  s t imula ted  N u m b e r  o f  N u m b e r  o f  RLPs  in RLPs free in te rcep ted  

plate Laue spots  RLPs RLPs in RLPs in energy and f rom energy  and  free 
dis tance in tercepted  in tercepted  energy spat ial  spatial  or  spat ia l  f rom 

(mm)  by the plate  by the plate over laps  over laps  over laps  over laps  over laps  

A B C D E = A - B - C + D  

120 6826 7894 1848 420 0 5626 35.9 
95 8802 10 010 2082 1214 0 6714 42.8 
80 10 304 11 564 2184 2152 52 7280 46.5 
64 12 046 13 352 2260 3758 236 7570 48.3 
50 13 502 14 814 2268 6144 640 7042 44.9 
34 14 358 15 670 2268 10 408 1524 4518 28.8 

Notes 
1. Total number of stimulated RLPs 15 670 (see Note 4). 
2. Spatial overlap criterion used was spot centre-to-centre of 0.35 mm or less. 
3. Perfectly set crystal of pea lectin, incident beam along e, PL 0 ° orientation, a*=  0.01971, b*= 0.01635, c*= 0.00732 A- t ;  Ami, =0"45, A,,a~ = 2"6 A, 
D* = l/dmi . = 1/2'6 A ~; plate radius 59"3 ram. 
4. The 34 mm distance was set by the need for a 59.3 mm radius plate to accept the maximum stimulated Bragg angle 0,, = sin -t  (Ama~D*/2) = 30"0 °. The 
95 mm distance was that chosen in the original experiments of Helliwell (1984, 1985). 

(cf. a = b* A e*/V*). As an example, the RLPs (1, 3, 3) 
and ( 6 , - 5 , - 5 )  yield u =0,  v =23, w = - 2 3 ,  so the 
zone axis is [01]-]. The RLPs in this zone plane satisfy 
k - l  = 0, and hence have indices of the type hkk. 

4.2. Conics 

Any net plane of RLPs passing through the origin 
has an associated zone axis [uvw]. On a flat detector 
the reflections from the accessible RLPs of this plane 
are recorded in the Laue method as a series of spots 
lying on a conic. These conics have been known from 
the earliest days of X-ray crystallography. That the 
loci are conics may be proved from the diffraction 
construction. 

All RLPs on any ray reflect the incident beam at 
the same Bragg angle 0 and same azimuth ft. Accord- 
ingly the direction of the diffracted beam is deter- 
mined only by the orientation of the ray and we may 
find its direction by using the Ewald construction 
with an arbitrary wavelength. A zone plane, which 
contains many rays, intersects an Ewald sphere of 
arbitrary radius in a circle. The sphere centre C and 
the circle define a fight-circular cone, whose axis is 
parallel to the zone axis [uvw], Fig. 9(a). By the 
Ewald construction, the directions of the diffracted 
beams lie on the surface of this cone. Any plane 
section of such a cone is a conic section: ellipse, 
parabola or hyperbola. All conics pass through F, the 
point at which the incident beam meets the plate. 

Let ~ be the cone half-angle, i.e. the angle between 
the zone axis and the incident beam. If the detector 
is normal to the incident beam, the angle between 
the detector normal and the cone axis is also ~. The 
conic is an ellipse, parabola or hyperbola according 
as ~ < 7r/4, ~b = 7r/4 or ~ > 7r/4. Further details of 
conic geometry are given in Appendix 1. 

6 

incident%earn C 0 r= 
circular zone cc~ic on 

section plate 

(a) 

6 

B 

0 D F 

(b) (c) 

~ G 6o 

Fo Fo 
d) (e) 

Fig. 9. Diffract ion geometry .  C is centre  o f  Ewald sphere  o f  
arbi t rary  radius.  The  zone  axis [uvw] makes  an angle  ~ with the 
incident  beam,  which meets  the de tec tor  at E ( a )  Zone  conic  
fo rmed  on de tec to r  by circular  zone  sect ion f rom Ewald  sphere.  
R is conic  centre;  f~ , f2  loci. (b)  Ray OA in zone p lane  (corre-  
spond ing  to b e a m  CT);  0 is origin of  rec iprocal  lattice. 
(c) N o r m a l  view o f  conic on detector .  (d )  Side view o f  tilted 
detector. (e) Normal view of tilted detector. 
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5. Rays and beams 

5.1. Azimuthal coordinates 

As in CHM1 we use the word ray to denote a line 
in the reciprocal lattice passing through the origin. 
We use the word beam to denote the direction of a 
diffracted X-ray beam. We now consider how rays 
and beams are related and in particular how the small 
angle ~Sa between two neighbouring rays is related 
to the small angle 6y between the corresponding 
neighbouring beams. 

Fig. 9(b) shows a normal view of the circular sec- 
tion cut by the zone plane from an Ewald sphere of 
arbitrary radius 1/A and Fig. 9(c) shows a normal 
view of the corresponding conic (in this case an 
ellipse) on the detector. The directions of the two 
normals to Figs. 9(b) and (c) differ by the cone 
half-angle tO. Let the line of intersection of the zone 
plane with the origin tangent plane be OD. Let FH 
be the corresponding parallel line on the detector, so 
that/_ TFH =/3 measures the azimuth of the diffracted 
beam CAT. If in the circular zone section a =/__AOD, 
then OA=OB sin a, but OA---2 sin 0/A and OB= 
2 sin to/A. Hence 

sin 0 = sin to sin a, (5.1) 

which relates the angular position of a ray in a zone 
plane to the zone inclination and the Bragg angle of 
the diffracted beam. 

The azimuthal coordinate/3 of the point T on the 
detector, Fig. 9(c), can be expressed in terms of the 
corresponding coordinate a of the point A in the 
zone, Fig. 9(b). If QT is the normal from T to the 
major axis of the conic, suppose the detector to be 
tilted by to about QT as axis so that it becomes parallel 
to the zone plane, Fig. 9(d).  The point of incidence 
of the direct beam on the plate is then F0 and 
/_ FoQF = to. The conic formed on the detector by the 
diffraction cone is now a circle with/3o = a, Fig. 9(e). 
Since the tilted detector is parallel to the zone plane, 
the triangles OKA and FoQT are similar and 

tan a = OK / KA = FoQ/ QT. 

But FoQ = FQ/cos to, so that from Fig. 9(c) 

tan/3 = F Q / Q T =  FoQ cos tO/QT. 

Hence 

tan/3 = cos to tan a. (5.2) 

5.2. Angular separations 

If in the zone plane, Fig. 9(b), OA and OA' are 
neighbouring rays separated by an angle 6a, then the 
corresponding diffracted beams CT and CT' are sep- 
arated by an angle 

~Sy =/_TCT' =/_ACA'= AA'/(1/A ), 

since A C = A ' C =  1/A. Since 6a is small, AA' is 
effectively tangential to the circle at A and AA' makes 
an angle a with OA. Consequently, 

AA'= OASa/sin a 

= (2 sin O/h)6a/sin a = 2 sin to 6a/h. 

Hence, 

87 = 2 sin to 6a, (5.3) 

which is the general relation between the angle 6a 
between two neighbouring rays in reciprocal space 
and the angle 6y between the corresponding diffrac- 
ted beams. 

A small solid angle ~I2, in reciprocal space may 
be regarded as formed from two orthogonal elements 
6a, and gab, where 6a~ is a small angular displace- 
ment from a reference ray in the plane a of the 
incident beam and the reference ray and gab is a 
small angular displacement in a plane b perpen- 
dicular to plane a. If the reference ray has Bragg 
angle 0, the zone plane a has to = 7r/2 and the zone 
plane b has to = 0. The corresponding displacements 
By,, and 8yb of the diffracted beams are also 
orthogonal. Hence 

6y~6y~ = 2 sin (Tr/2)6a~2 sin 0 6ah 

= 4 sin 0 60t,,6ah, 

or in terms of solid angles 8.Q~/ and 6.Q, measured 
respectively from C and O 

~5.O~ = 4 sin 0 &O,. (5.4) 

6. Ray separations 

We now derive expressions for the angular separ- 
ations between adjacent rays passing through RLPs 
of the accessible region. The method used depends 
on the general properties of lattices and in part 
develops ideas contained in Bravais's classic memoir 
of 1850 (see translation: Bravais, 1949). The general 
properties of lattices apply equally to the direct lattice 
and the reciprocal lattice. The latter is discussed by 
Bravais as the polar lattice; it differs from the 
reciprocal lattice by a scale factor (see also 
Cruickshank, 1991). 

6.1. Plane nets 

A cone of diffracted beams is generated by the 
RLPs lying in the zone plane perpendicular to the 
zone axis [uvw]. These RLPs are part of a two- 
dimensional net of points. Base axes for this net can 
be chosen in many ways. Let A~ and A2 be the inner 
points of two rays (central rows). Bravais defines the 
rays OA~ and OA2 as conjugate when no RLP falls 
within the parallelogram defined by OA~ and OA2. 
Such a parallelogram is then a generating 
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parallelogram of the net. A theorem of Bravais shows 
that the generating parallelograms of a net all have 
the same area, whatever conjugate rays are chosen. 

Suppose, as in part of the discussion of § 3.2 on 
Laue reflection distributions that Amax/Amin>--2 and 
that we. consider the region where 0 -  02= 
sin -~ (AmaxD*/4), so that d*-> 2d* on every ray. In 
this region the angular positions of the accessible rays 
are determined only by the external surface Se. 

Consider two adjacent rays of the accessible region 
of the net whose inner points A~ and A2 lie on or 
within S~. These two inner points and the origin define 
a parallelogram, whose fourth vertex A4 must lie 
outside the accessible region, since otherwise OA, 
and OA2 would not be adjacent accessible rays. Since 
the surface Se is convex, no accessible RLPs lie within 
the triangle OA,A2 and because any net has a centre 
of symmetry at the centre of every parallelogram, no 
RLPs can lie within the triangle A4A2AI. Accordingly 
there are no RLPs inside the parallelogram OAIAaA2 
and consequently the two rays OAI = d* and OA2 = 
d* are conjugate in the sense of Bravais. 

Thus d* and d* form a generating parallelogram 
(unit cell) in the [uvw] plane, whose area A*(uvw) 
is the same for all adjacent pairs d*, d* of the acces- 
sible region of the plane. Thus A*(uvw) is also the 
area of the conventional primitive cell for this 
reciprocal net plane. 

The angle a,2 between adjacent rays is given by 

a12 = sin -~ (A*/d*d*) (6.1) 

or, since al2 is small for adjacent rays, it is closely 
given by 

al2 = A*/ ( d* d*2 ). (6.2) 

Also by (4.1), A*(uvw)= P[uvw]V*= P[uvw]/V 
where P[uvw] is the distance from the origin to the 
inner point of the [uvw] zone axis and V is the 
direct-space unit-cell volume. Hence a12 may also be 
written 

o~12 = P[ uvw]/ d* d* V. (6.3) 

Equations (6.2) and (6.3) for the angle between 
adjacent rays are valid when 0-< 02. When 0 >  02 
some rays whose inner points are within Se will have 
no accessible RLPs between S~ and S~, and these rays 
will be missing in the Laue pattern. Thus for 0 > 02, 
(6.2) must be replaced by 

Otl2=(r+ l)A*/d*d*2, 

where r is the number of missing rays. 

6.2. Space lattices 

Consider now three non-coplanar rays OA~, OA2, 
OA3, where A,,  A2, A3 are inner points. If the 
parallelepiped defined by these rays contains no RLPs 
within it or on its lateral faces, the three rays are 

called conjugate by Bravais and the parailelepiped is 
a generating parallelepiped of the reciprocal lattice. 
Bravais showed that the generating parallelepipeds 
of a lattice all have the same volume. In our problem 
this volume is V*, the conventional primitive 
reciprocal unit-cell volume. By a standard formula 

V *  * * * = dl d2 d3[1 - c o s  2 a23- cos 2 0t31 - c o s  2 t~12 

+ 2 cos a23 cos a3t cos a,2] 1/2, 

where 0t23 , a31 , oil2 are the inter-ray angles. If the 
inter-ray angles are small, 

[1 - cos 2 O1~23 -- . . . ]1 /2  
1 2 2 2 

= ] [ 2 c ¢ 3 t  a 2 2  + 2 a  120¢23 

2 2 
+ 2 a 2 3 0 t 3 ,  --  a ~ 3  - -  a ~ l  - -  u~ 412j l l /2  

= 2[s(s-oe23)(s-a3,)(s-ol,2)] 1/2 

= 2 a 1 2 3 ,  (6.4) 

where S=(O~23-1-O~31+tX12)/2 and a123 is the solid 
angle defined by the three rays (i.e. the area in 
steradians of the spherical triangle defined by the 
three rays). Accordingly 

V* i 
Oe123 - -  2 d , d : ~ A ~ g ,  ( 6 . 5 )  

t* I ~ 2  t~3 

provided the three rays are conjugate and the angles 
between them are small. 

We may describe three non-coplanar rays as 
mutually adjacent if each pair of rays forms an adja- 
cent pair in the accessible region of the zone defined 
by the pair. We now ask, for 0 < 02, whether three 
such non-coplanar mutually adjacent rays are conJu- 
gate if the spherical triangle corresponding to a,23 
has no other accessible rays within it? The answer is: 
often, but not necessarily. The requirement that the 
three rays be conjugate is stronger than a requirement 
that the rays be conjugate in pairs. If the rays are 
conjugate in pairs, there are no RLPs on any of the 
faces of the parallelepiped, but nothing is implied 
about the interior. Since Se is convex the tetrahedron 
OAIA2A3 contains no inner points within it as other- 
wise the corresponding rays would appear within the 
solid angle a~23. However, this tetrahedron and the 
inverse one at the far vertex of the parallelepiped 
occupy only 2/6 of the volume of the parallelepiped 
and the reciprocal lattice may have inner points out- 
side Se but within the parallelepiped. Thus the solid 
angle formed by three mutually adjacent rays may be 
an integral multiple of the value given by (6.5). This 
multiple is equal to the determinant of the indices of 
the inner points of the rays. 

The spatial overlap problem is concerned with 
small values of the inter-ray angles a12,. • • • Can two 
or three of the inter-ray angles involved in a123 be 
simultaneously very small? If the zones correspond- 
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1 
ing to 0f23 and of 31 are perpendicular, 0~123 = ~C~23Oe31 • 
If for simplicity we consider a cubic cell of side a* 
and all d* = D*, then V* -- a .3 and the smallest A* = 
a .2. Hence the smallest inter-ray angle ix23 =- a*2/D .2, 
but 

e x , 2 3  = ½a*31 D .3~  - a 2 3  ~a*l D*. 

Thus 

a3, = a*/ D* = a*2/ ( D" a*), 

which is D*/a* times the smallest angle a23. 
Accordingly when three mutually adjacent conju- 

gate rays are considered, only one of the inter-ray 
angles can be very small. The other two angles must 
be substantially larger. This explains the observation 
that the spatial overlaps in Laue patterns at moderate 
crystal-to-plate distances do not form two-dimension- 
ally overcrowded clumps but cluster along the arcs 
of zones. 

6.3. Example 

To illustrate (6.2), a~2 A*/(d* * = ~ d2 ) for ray separ- 
ations when 0 < 02, consider the zone net in Fig. 10. 
For simplicity the lattice has been taken as square 
and the external boundary Se of the accessible region 
has been taken as a circle of radius D*. Since we are 
considering ray separations an inner boundary Si has 
been omitted, because no rays with inner points inside 
Se can be lost when 0 < 02. 

The diagram illustrates theorem 2 of CHM1 that 
rays of multiplicity n within Se have their inner points 
at radii between D*/n and D*/(n+ 1). As can be 
seen, the inner (and sole) points of all singles have 
radii >-D*/2, while the inner points of all doubles 
lie between D*/2 and D*/3. The ray at the bottom 
of Fig. 10 through the RLP (1, 0) has multiplicity 13, 
and has a large angular separation 4"76 ° from its 

0 • 

0 

O*  t 11'11 

t ( 5 , t 4  
/ ~ ,,1~..31 

/ " " \  ,,13,21 

/ /  . . . .  ~ .12.1, 
. ./ . . . .  ..../~ ~ (5,2) 

. / , ,  • ..~j~-~--~-i..>~i..>~j.~ _ 1S.ll 

I _1 . L - ~ : - : : , - " ~ 1 1 , 0 1  

2 t, 6 8 10 12 

h 

Fig. 10. Rays in a zone net. Square lattice with D* = 13a* so that 
hma x -- 13. Rays of  multiplicity n have their inner points at radii 
between D*/n and D*/(n+ 1). Doubles  and higher multiples 

are marked by arrows at ends o f  rays. 

neighbour (12, 1), which is a single. (12, 1) is separ- 
ated from (11, 1) by a small angle 0.43 ° and the gap 
between successive singles increases slowly to 1.01 ° 
between (8, 1) and (7, 1). The ray through (6, 1) is a 
double and makes angles 1.33 ° with (7, 1) and 0.84 ° 
with (11, 2). Then comes the double (5, 1) and a single 
(9, 2), followed by a triple (4, 1), three singles (11, 3), 
(7, 2), (10, 3) and a quadruple (3, 1). After two singles, 
a double (5, 2) and four singles, the quintuple (2, 1) 
is reached and this makes the relatively large angles 
2.13 and 2.04 ° with its adjacent singles. 

6.4. Analysis and consequences 

In Fig. 10 it can be observed that no two multiples 
are adjacent. This is easily proved to be a general 
result. For, if two supposedly adjacent n-tuples have 
as their inner points (1, 0) and (0, 1) in appropriately 
redefined base axes, the diagonal point (1, 1) lies on 
the line joining the second-order points (2, 0) and 
(0, 2) and is thus within the convex boundary Se. 
Accordingly an accessible ray lies between the n-tuple 
rays. 

The large angular separation around an n-tuple with 
high n, also illustrated in Fig. 10, follows immediately 
from (6.2) for Ot12 , since d* is small when n is large. 

Since the inner points of single rays lie between 
D* and D*/2 and of n-tuples between D*/n and 
D*/(n + 1), it follows by (6.1) that the angle between 
two single rays lies in the range A*/D .2 to 4A*/D .2, 
while the angle between an n-tuple and a single may 
be shown to lie in the range nA*/D .2 to [ ( n +  
1)2/n]A*/D .2 (Brooks, Moffat & Cruickshank, 
1991). 

In Fig. 10, A * =  a .2, h m a  x = 13 and D * =  13a*, so 
that A*/D . 2 =  1/169 and (~O£mi n = 0"34 °. In a version 
of Fig. 10 extended to the diagonal ray through (1, 1), 
the actual spread of separations between singles is 
0.43 to 1"01 °, as compared with the theoretical limits 
of 0.34 to 1.36°; while the actual spread of separations 
between doubles and singles is 0.79 to 1.33 °, as com- 
pared with the theoretical limits of 0-68 to 1-53 ° . 

Both numerical simulations and a simple theory 
based on random distributions of neighbouring d* 
and d* (Brooks, Moffat & Cruickshank, 1991) show 
that the statistical distributions of n- tuple 's ingle  
separations are very skew. For the single" single distri- 
bution, shown in Fig. 11, 72% of values are below 
2A*/D .2, which is the lowest possible value of a 
double ' s ingle  separation. 

Thus spatial overlaps occur most severely between 
adjacent single rays. 

The average spacing between rays, irrespective of 
multiplicity, can be estimated as follows. The number 
of inner points in a sector of angular width Aa is 
( Q2/ A*)/(½D*2Aa), where 

0 2 = ( 1 - 1 / 2 2 ) ( 1 - 1 / 3 2 ) ( 1 - 1 / 5 2 ) . . . = 0 . 6 0 8  (6.6) 
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is the probability that a randomly chosen RLP in a 
two-dimensional net is an inner point (cf. the 
definition of Q in three dimensions, § 1.2). The num- 
ber of inner points is the same as the number of rays 
which emerge across the external boundary S~ (pro- 
vided d*-> 2d*). This boundary subtends the angle 
Aa, hence the average angular spacing between rays 
is 

a~vg=(2/Q2)/(A*/D*2)=3.29A*/D .2. (6.7) 

This is 3.29 times the minimum possible separation 
of any two rays. In the example of Fig. 10 a,,~ was 
1.15 °, which is satisfactorily close to 3 .29x0.34  °=  
1.12 ° . 

7. Beam separations 

7.1. Theory 
The experimental problem about the resolution of 

adjacent spots concerns interbeam angles, so we now 
combine two key equations (5.3) and (6.3). The first, 
6y = 2 sin ~ ~a, connects the angle ~a between neigh- 
bouring rays with the corresponding angle 6y 
between neighbouring beams. The second, a,z = 
P[uvw]/(d*d* V), expresses the angle between adja- 
cent rays in terms of the radii of the inner points of 
the rays. For the zone in question, their combination 
gives the angle between adjacent beams as 

yl2=2P[uvw] sin q,/d*d*V. (7.1) 

This equation is central to the subsequent analysis. 
The minimum possible separation between beams 

for the zone is 

"~min = 2P sin O/D*2V, (7.2) 

while the average separation between beams when 
0 c < 0 < 0 2 is 

7~g=(4/Q2)Psind//D*2V. (7.3) 

The minimum separation (7.2) applies when both 
beams are singles with order n = 1. When one beam 

is an n-tuple the minimum separation will be n times 
as large. 

It should be noticed, for a given lattice and for 
specified rays OA1 and OA2, that ~ is the only vari- 
able in (7.1) for the interbeam angle. The specification 
of A, and A2 determines [uvw] and hence P. Nor 
does Y,2 depend explicitly on A, 0 or the azimuth. 
Thus the only direct way to increase a particular Y]2, 
or any other Y0 of the same zone, is to increase sin 
by changing the crystal orientation (provided of 
course that a RLP of each ray remains in the accessible 
region, which may require 0 < 02). 

Equation (7.1) offers a simple interpretation of the 
density of spot spacing along the conics in Laue 
patterns. P[uvw] is the distance from I~he origin to 
the point (u, v, w) of the direct lattice, while ~ is the 
angle between the zone axis [uvw] and the incident 
beam. Thus P sin ff is the distance from (u, v, w) to 
the line of the incident beam. Accordingly, in the 
direct lattice, as shown in Fig. 12, any points (u, v, w) 
on a cylinder of given radius P sin 4J define zone 
conics in the Laue pattern whose arcs have the same 
average angular beam separation. On a spherical 
detector of radius CF the spatial separation between 
spots will be CFy~2; on a fiat plate there will be 
further factors 1/cos 2 20 in the radial direction and 
l /cos  20 in the orthogonal direction. 

7.2. Examples 

Fig. 2 shows the pea lectin Laue pattern when the 
incident beam is along the b axis (PL 90 ° orientation). 
The conics of some major zones are labelled. The 
direct-lattice points (1, 0, 0), (1, 1,0), (1, 2,0), 
(1, 3 , 0 ) , . . .  are all at the same distance from the b 
axis. Hence for all of them P sin ~b= a = 51 A and 
the same average interbeam angle is to be expected 
for the corresponding conics between 0c and 02. It is 
evident visually in Fig. 2 that the linear density of 
spots is similar in all these conics. 

The zone [210] has P sin ~ = 2 a  = 102 ~ and has 
its average interbeam separation doubled relative to 
the [1 v0] set. 

10 
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Single:single probability distribution P(a) for the separ- 
a between adjacent single rays. The mode, median and 

mean are at ot/(A*/D .2) = 1-396, 1.687 and 1-778. The smallest 
possible double:single separation has a/(A*/D .2) = 2.0. 
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Fig. 12. Direct-lattice points (u,v,w) on cylinder P s in4 ,=  
constant. The lattice points on the cylinder define zone conics 
in the Laue pattern, all of which have the same average angular 
beam separation (for 0c < 0 < 02). 
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The zones [001], [011], [ 021 ] , . . .  have P s i n  q,= 
c = 137 A, so that their in terbeam separat ions are still 
larger. Conversely the gaps bordering their conics are 
small  (being proport ional  to 1/P as will be shown in 
§ 8). It is thus not surprising that the conics of the 
[0v l ]  set cannot  be picked out immedia te ly  by eye. 

Fig. 13 shows the Laue pattern when the incident  
beam is along the c axis (PL 0 ° orientation).  Two sets 
of  conics can now be seen easily: the [10w] set has 
P s i n O = a = 5 1 A a s f o r t h e [ l v 0 ] s e t i n  Fig. 2, and 
the [01 w] set has P sin O = b =61 A. The interbeam 
spacing in the latter set is slightly greater than in the 
former set. This may be detected most easily by com- 
paring the [011] and [101] conics which meet at the 
111 nodal  point. Through the same nodal  point, one 
can see the straight line of  the [1]'0] conic which has 
qJ= I7-/2 and P sin qJ = 7 9  ~ with a larger average 
spacing between spots. 

The [201] conic with P sin ~0 = 2a = 102 A can just 
be detected, as can, with a little more difficulty, the 
[021] conic with P sin q~ = 2b = 122 A. 

The PL 30 ° patterns have already been introduced 
in § 2, but rather than discuss the full pattern of Fig. 
1 (a)  it will be easier and more pertinent if  we analyse 
Fig. 14 which shows only those spots involved in 
spatial overlaps closer than 0.35 mm for a crystal-to- 
plate distance of 95 mm. Some of the main  zones are 
identified and circles have been superposed corre- 
sponding to 0,, = sin -l ( h m i ~ D * / 2 )  = 5"0 ° and 02 = 
s i n  -~ ( h m a x D * / 4 )  = 14"5 °. The plate edge occurs at 
0,cc-- 16"0 °. In the region between 0~ and 02 no rays 
with inner  d*_< D* are lost. Thus apart from the flat 

plate factors, in this region each conic has a constant  
statistical average density of  spots along its arc. Below 
0,. the density decreases with d .2 which is propor- 
tional to sin 2 0. 

Because of the more general orientation of the 
crystal there is now a variety of  values of P sin tk. The 
lowest is 15/~ for the [011] conic, which is the very 
dense ring near  the centre. It can be seen that the 
spacing density along the arc rises as 0 increases to 
0,. and is then statistically constant. The next lowest 
P sin q~ is 22 A for the [032] conic; however, this is 
a smaller  ellipse which does not reach the 0c circle 
and its density is less p rominent  than the larger [021] 
ellipse with P sin qJ = 38 A which reaches almost  to 
02 at the left. It can be seen that the spatial overlap 
densities of  [010] 53 ~ ,  [100] 51 ~ and []11] 53 
are very similar. The last two are members  of the 
[[vv] family,  in which by v = 3 the spatial overlaps 
in the []33] conic with P sin ~ =69  A are only just 
traceable along the arc. By v = 5 only the two points 
of  the conic closest to the 0]'1 nodal remain (these 
points are actually well separated from the nodal  by 
a large gap across the clear area surrounding the 
[011] conic); []'55] has P s i n  qJ = 9 2 / ~ .  

The essence of the present discussion is as follows. 
To every conic of  spots in a Laue pattern, there 
corresponds a single point  in the direct lattice (the 
zone axis). The distance of  each direct-lattice point 
from the incident-beam line determines the average 
spacing of  the spots in the corresponding Laue pattern 
conic. 

Some general  remarks about  the qJ dependence  of  
the accessible areas of zones are given in Appendix  2. 
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Fig. 13. Computer  simulation of  Laue pattern for pea iectin. PL 0 ° 
orientation, incident beam along e. Crystal-to-plate distance: 
95 mm. 
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Fig. 14. Compute r  simulation of  Laue pattern for pea lectin, but 
showing only spots involved in spatial overlaps. PL 30 ° orienta- 
tion. Crystal-to-plate distance: 95 mm. The circles have 
radii corresponding to 0 , . = s i n 1  (hminD*/2) and 02 = 

s i n  i (h ..... D*/4) .  
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Table 3. Variation of optimum crystal-to-plate distance 
as function of spot-to-spot resolution distance 

Spot - to -spo t  O p t i m u m  N u m b e r  o f  RLPs % o f  RLPs  
resolut ion crys ta l - to-pla te  free f rom energy in tercepted  and  
dis tance dis tance or spat ial  free f rom 

( m m )  ( m m )  over laps  over laps  

0.2 50 10 788 68.8 
0.3 60 8532 54.4 
0.35 64 7570 48.3 
0.4 70 6656 42.5 
0.5 80 5174 33.0 

Notes 
1. Total number of stimulated RLPs 15 670. 
2. PL 0 ° orientation. 
3. ;tmi., ;tin.x, D* and plate radius as in Table 2. 

7.3. Required spot-to-spot resolution capability 

For a given crystal and assuming perfect 
geometrical conditions, what is the smallest possible 
angular separation of two diffracted beams ? The gen- 
eral equation (7.1) for beam separation is 

712 = 2 sin $ C t l 2  = 2P sin tp/(d*d* V). 

The separation will be smallest when: (i) P = ami,, 
the smallest cell dimension; (ii) the d* are near their 
largest value D*; and (iii) the zone inclination ~ is 
the smallest compatible with (ii), i.e. when ~b = 0c. 
Hence, sin 4'c = sin 0c = AminD*/2, so that the smallest 
possible beam separation is 

~/min = ( a m i n ~ m i n ) / ( D *  V). (7.4) 

For pea lectin, Pmi, sin ~¢ = 51 sin (5.0 °) = 4.4/~ and 
with the parameters used in the simulations of § 2 

ymm = (51 x 0"45)/[(1/2"6) x (51 x61 x 137)] 

= 1 "40 x l0 -4 rad = 0.0080 °. 

Thus to resolve the smallest possible beam separ- 
ations from pea lectin, an ability is required to resolve 
spots 0 .14mm apart on a detector 1 m from the 
crystal. 

This is manifestly an oversevere and unrealistic 
criterion, for few orientations would lead to any sig- 
nificant number of spots anything like so close. Even 
for the PL 30 ° orientation, the closest spots on the 
[011 ] conic are three times further apart, P sin ~b being 
15 A. For a given zone from (6.7), average spot separ- 
ations are of course 3.29 times the minimum value. 

It was evident that spatial overlapping was less 
acute for the aligned PL 0 ° and PL 90 ° situations than 
for PL 30 °. In each of the aligned situations the lowest 
P sin ~ was 51 ,~ ( = a ) ,  whereas in P L 3 0 ° P  sin 
dropped to 15 A. When P sin ~ = 51 A, and with the 
parameters used in the simulations of § 2, (7.2) yields 

"Ymin = (2P sin ¢,)/(D*2V) 

= (2 x 51)/[(1/2.6)2 x (51 x61 x 137)] 

= 16-2 x 10 -4 rad = 0.093 °. 

Table 4. Variation of optimum crystal-to-plate distance 
as function of spot-to-spot resolution distance for 

doubled cell dimensions 

Spot - to -spo t  O p t i m u m  N u m b e r  o f  RLPs  % o f  RLPs 
resolut ion crysta l - to-pla te  free f rom energy in te rcepted  and  
dis tance dis tance or spat ial  free f rom 

( m m )  (mm)  over laps  over laps  

0.2 100 33 164 26.5 
0.3 170 15 878 12.7 
0.4 220 8831 7.0 
0-5 290 5262 4.2 

Notes 
1. Total number of stimulated RLPs 125356. 
2. PL 0 ° orientation, with a*=0.01971/2, b*=0-01635/2, c*= 
0.00732/2 A, -I. 
3. ami,, Amax, D* and plate radius as in Table 2. 

If the crystal-to-detector distance is 100 mm, the spot- 
to-spot resolution capability required to avoid all 
spatial overlaps for this orientation is 0.16 mm. 

If the requirement is further relaxed to the level of 
requiring only that all spatial overlaps be avoided in 
PL 0 ° for the [20w] zones with P sin ~ = 102 A,, the 
resolution capability required changes by a factor of 
2 to 0.32 mm. This is approximately the situation of 
PL0 ° in Fig. 8(a) for which C F = 9 5 m m  and the 
spot-to-spot resolution is 0.35 mm. In this case the 
seriously overlapped zones are nearly all of the kinds 
[10w] and [01 w]. The data in Table 2 show that 10 010 
RLPs are intercepted by the plate at this distance, 
though 15 6 7 0 -  10 010 = 5660 are not intercepted, 
and that 1214 RLPs are lost due to spatial overlaps. 
At CF = 64 mm fewer RLPs (15 6 7 0 -  13 352 = 2318) 
miss the plate, but the number of spatial overlaps 
increases to 3758. From Fig. 8(b) we see that the 
number of overlaps in the [10w] and [01 w] zones has 
increased considerably (due to the acceptance limit 
moving to the right in probability distributions like 
Fig. 11), and that overlaps are now occurring in zones 
like [ 11 w]. 

7.4. Optimum crystal-to-plate distance 

The computations of Table 2 showed that the 
64 mm distance led to the largest number of measur- 
able RLPs. Can such an optimum distance be deter- 
mined analytically? We have derived a possible for- 
mula covering both energy and spatial overlaps, but 
our examination of it is not yet finished. Here we 
present simulation results to highlight the effects of 
different spatial resolutions (Table 3)and the severe 
impact of larger unit cells (Table 4). 

For PL 0 ° with 0.2 mm resolution the opt imum CF 
distance is 50 mm and 68-8% of the 15 670 stimulated 
RLPs can be recovered. With 0-5 mm resolution only 
33% can be recovered at the optimum 80 mm distance. 

The effect of larger unit-cell parameters is dramatic. 
This can be illustrated (Table 4) by doubling the pea 
lectin cell dimensions but leaving the plate size and 
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other variables unaltered. The same volume of 
reciprocal space then contains eight times as many 
stimulated RLPs, viz 125356 against 15670. At 
0.2 mm resolution, the optimum C F  distance doubles 
to 100mm and 33 164 RLPs can be recovered. 
However, this represents only 26.5% of the total 
stimulated RLPs. At 0.4 mm resolution, the optimum 
C F  is 220 mm but only 7.0% of RLPs are recovered. 

Although spatial overlaps are determined by one- 
dimensional considerations, some guidance on the 
choice of crystal-to-plate distance can be obtained 
from the two-dimensional probability densities 
derived in § 3. Equation (3.3) gives the number of 
spots per unit area of plate and, when applied to the 
pea lectin conditions, shows that even for this unit 
cell the maximum densities at 0 = 0c are 16.0, 4.5 and 
2.0 spots mm -2 for C F  34, 64 and 95 mm. Coupled 
with a density dependence on 0 like Fig. 4, it is thus 
not surprising that, for C F  34 mm, 66% of RLPs are 
involved in spatial overlaps when the resolution capa- 
bility is 0.35 mm. 

8. Gaps bordering conics 

8.1. Delimiting planes 

A characteristic feature of Laue patterns such as 
Fig. l (a)  is that the conic corresponding to a zone is 
bordered on both sides by clear regions before other 
spots are reached. Smooth envelopes may be drawn 
around the two boundaries of the clear regions, so 
that no spots lie between these envelopes except the 
arc of spots belonging to the original zone conic. 

The spots on the conic with zone axis [uvw] derive 
from the RLPs on the zone plane 

hu + kv + lw = O. 

This central plane is bordered, on either side, by the 
two parallel planes 

hu + kv + lw = -t- 1. 

These planes, which are called delimiting planes by 
Bravais (1949), do not pass through the origin. There 
are no RLPs between the delimiting planes and the 
zone plane. Their distance from the zone plane is 
1/P[  uvw]. 

The envelopes of the clear regions in a Laue pattern 
correspond to the intersections of the two delimiting 
planes with the external surface Se of the accessible 
region of reciprocal space, viz the D* sphere when 
0 > 0c, or the 1/Amin Ewald sphere when 0 < 0c. 

Thus the dimensions of the clear gaps depend on 
D* when 0 > 0~ and on Arnin when 0 < 0c. We shall 
show also that clear gaps are inversely proportional 
to P and thus that wide gaps correlate with dense 
conics. Since good estimates of D* and Ami n a r e  

necessary for the processing of data from Laue pat- 
terns (Helliwell et al., 1989), we formulate the initial 

parts of the analysis in terms of the estimation of D* 
and Amin. The summary comparison of internal conic 
density and external clear gaps is given in § 8.5. 

8.2. Estimation o f  D* 

For 0 > 0c, a simple method of estimating D* is to 
examine the clear regions in the direction of the major 
diameter of a complete ellipse for some prominent 
zone. The zone inclination qJ must satisfy 0c < qJ < 
0 . . . .  where 0ace is the maximum 0 accepted by the 
detector. The major diameter of the ellipse on a planar 
detector is of length FG = C F  tan 2qJ and the point 
G arises from a Bragg angle 0 = ~. In this azimuthal 
direction on the detector, Fig. 15(a), the correspond- 
ing points G+ and G_ on the envelopes correspond 
to Bragg angles 0 + 6, where 6 = sin -~ ( 1 / P D * ) ,  since 
the interplanar spacing is 1 /P  and D* is the radius 
of the sphere forming Se. Thus G+ and G_ occur on 
the detector at distances C F  tan 2(4J + 6) from the 
detector centre F. Hence the positions of the 
envelopes give two estimates of 8 and thence of D*. 

If 6 is small, the angular separation ~rad between 
the beams striking the detector at G and G+ (or G_) 
is 

yr~d= 2/ PD *. (8.1) 

Also for small Yr,d, since F G  = C F  tan 2~, 

GG+ ~ GG_ = C F ( s e c  2 2~)y~ad 

= 2 C F  sec 22~b/PD*. (8.2) 

Hence we may estimate 

D * = [ Z ( C F / G G ~ _ ) s e c 2 2 0 ] / P [ u v w ] .  (8.3) 

8.3. Estimation o f  A,,,i,, 

For 0 < 0c, the corresponding estimate of Ami n must 
be made from a smaller ellipse with qJ < 0c. 

The external surface Se is now part of the ~'min 

Ewald sphere, which passes through the origin O of 
the reciprocal lattice. The zone plane uvw intersects 

/ i ' - -  rad / / ~ t ~  Oc circle 

I I 

F I I 

( a )  ( b )  

Fig. 15. Clear regions bordering zone conics. (a) Clear regions 
around an ellipse. (b) Clear regions when 6 = zr/2 and zone 
conic is a straight line. 
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Se in a circle passing through the origin. One or both 
delimiting planes also intersect Se in circles, whose 
centres E+, E_ lie on the axis of  the right-circular 
cone defined by the zone-plane circle and the centre 
of  the Ewald sphere (Fig. 16). The envelopes for the 
edges of  the accessible regions of the delimiting 
planes are also defined by fight-circular cones. 

If 4'+ and 4'_ are the half-cone angles corresponding 
to the delimiting planes hu + kv + lw = +1, we have 

but 

C E  = c o s  4 ' / '~ 'min ; CE+ = COS 4'+/)~'min ; 

CE_ = cos 4'_/,~tmin, 

C E  - CE+ = CE_ - C E  = 1 /P[uvw] .  

Hence we may estimate 

Amin = P[UVW](COS 4'-COS 4'+) 

= P[uvw](cos  ~_ - c o s  4'). (8.4) 

If the zone axis coincides with the incident-beam 
direction, then 4' = 0 and the zone plane is tangential  
to the 1/hmi, Ewald sphere. There are no reflections 
from the zone plane and the Laue pat tern has a 
circular central clear region whose radius is deter- 
mined by the intersection of  the 4'+ delimiting plane 
with the Ewald sphere. With cos 4' = 1, (8.4) reduces 
to 

Ami, = P[UVW](1 -COS 4'+) 

= 2P[uvw]  sin 2 (4'+/2), (8.5) 

where 4'+/2 is the Bragg angle corresponding to the 
radius of  the clear region. Jeffrey (1958) earlier gave 
this equat ion in the form c = ) t / (2 sin 2 0), where c is 
the lattice parameter  in the beam direction. 

If the differences 4 ' ± - 4 '  are small in c o m p a r i s o n  
with 4' and 4' < 0c so that  the ellipse is complete,  the 
angular  separat ion Yraa between the beams striking 
the detector  in the radial direction at G and G~ is 

BEAH 

E 

/,E_ Iuvvl 

0 

1/),~, e sphere 

Fig. 16. Intersections of zone plane and its delimiting planes with 
1/Amin sphere. 

')trad = ~ . m i n / P  s i n  4'. T h e n  

GG~ "" CF(sec  2 24')Yraa 

= CF(sec  2 24 ')Ami. /P sin 4'. (8.6) 

Hence we may estimate 

A m i , = [ ( G G ± / C F ) P s i n  4']/sec224". (8.7) 

As a check on the working, we note that  the 
expressions (8.2) and (8.6) for GG+ are equal  when 
4' = 0~ = sin -~ (AminD*/2) .  

8.4. General directions 

Let F be the centre of  the detector  and T any spot 
on a zone conic, Fig. 15(a).  Let F T  meet either of  
the envelopes surrounding the clear region at  Ttrad, 
so that the radial gap is TT~aa. Let TT~gt be the gap 
in the direction at right angles to FT. For a small gap, 
T and T~g t will have the same 0. 

When 0 >  0c, it may be shown that  the angular  
separat ions,  if small, between the beams correspond-  
ing to T and T~a d and between T and T~g t a re  

Yrad = 2 / P D *  sin 77 (8.8) 

and 

7tgt = 2  sin O/PD* cos r/, (8.9) 

where r/ is the angle between the diffraction plane 
and the zone plane, given by sin 7/= cos 4 ' /cos 0. For 
the max imum diameter  of  an ellipse 0 = 4 '  and 
sin 77 = 1. Yraa (8.8) then reduces to the previously 
given (8.1). 

I f the  conic has 4' = 7r/2, it is a straight line through 
the centre of  the detector,  Fig. 15(b). Only %gt is 
meaningful  and r /=  0. We obtain 

'~tgt ~ - -  2 sin O~ PD* (8.10) 

and since C T  = C F  sec 20 

TT~gt = 2 C F  sin 0 s e c 2 0 / P D * .  (8.11) 

When 0 < 0c, the analysis of  § 8.3 and Fig. 16 may 
be appl ied to a conic with 4'-- 7r/2 and cos 4' = 0. E 
then coincides with C and we obtain cos 4'~: = ;tmi,/P. 
The tangential  gap at any point  T, with Bragg angle 
0, of  the straight line conic is 

TT~st= C F s e c 2 0  cos 4'~ = A m i n C F s e c 2 0 / P .  (8.12) 

The expressions (8.11) and (8.12) for TT~s t are equal 
when 0 = 0¢. At small 0 the gap TT~gt is by (8.12) 
practically independent  of  0 and is of  magni tude  
TT~gt = A rain C F / P .  

8.5. Comparison o f  internal and external separations 

In a Laue pattern,  conics with a high densi ty of  
spots are bordered by large clear regions. This 
observat ion is made more precise by the analysis of  
this paper.  
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When 0 > 0~, the minimum internal angular separ- 
ation between adjacent beams in a conic is 

Ymin = 2P sin ~/D*2V. (7.2) 

The minimum external angular separation across the 
clear border region at the major diameter of an ellipse 
is 

"Yrad : 2/PD*.  (8.1) 

When 0 > Oc and ~ = ~r/2, the minimum angular 
separation between adjacent beams in a straight-line 
conic is 

Ymin= 2P/ D*2V (8.13) 

and the minimum angular separation sideways across 
the clear region is 

Ytgt = 2 sin O~ PD*. (8.10) 

When 0 < G, the corresponding separations are 
obtained by replacing D* by 2 sin 0/Amin in the above 
equations. 

We see that the internal separations depend on 
P sin qJ, whereas the external border width depends 
on 1/P. Hence, apart from the sin t/, factor, there is 
an inverse relation between the internal and external 
separations. This is another way of expressing the 
point made in § 6.2 that when three mutually adjacent 
conjugate rays are considered, only one of the inter- 
ray angles can be very small. 

The ratio between the external ~/rad (8.1) and the 
internal Ym~, (7.2) is D* V~ p2 sin qJ. For comparison 
with the argument in § 6.2, we may take V = 1/V* = 
1/a  .3 and P =  l/a*, thus making the ratio 
D*/a* sin 0, which is much greater than 1. Apart 
from the factor sin 0, which arises from the distinction 
between diffracted beams and rays, this ratio is the 
same as appeared in § 6.2 for the ratio between Of 31 

and the smallest inter-ray angle a23. 
A further point related to external separations and 

concerning visible rings surrounding prominent 
conics is discussed in Appendix 3. 

9. Main findings and discussion 

9.1. Summary of chief theoretical results 

There are two main aspects to the angular distribu- 
tion of rays and diffracted beams presented above: 
general and local. The general aspects refer to the 
diffraction pattern as a whole and local to reflections 
in a particular zone or in a small region of that zone. 

It comes as no surprise that the spatial density of 
reflections is everywhere proportional to 1/CF 2, 
where CF is the crystal-to-detector distance and to 
1/V* where V* is the reciprocal-cell volume. 
However, there is substantial variation in spatial 
density with diffraction angle 0; a prominent 

maximum occurs at 0c = sin -1 (Ami,D*/2) as shown 
in Fig. 4~ The value of this maximum may be dimin- 
ished by increasing ~min and hence also 0c, as shown 
by (3.5). Conversely, (3.5) shows that a very small 
~ m i n  would lead to a greatly increased density at a 
very small 0c. 

More interesting results arise when considering 
local aspects. The most striking visual aspect of Laue 
patterns, namely the prominent conics on which the 
reflections lie, demarcated by clear spaces, is 
explained by an application of the Bravais theory of 
lattices, §§ 6.2 and 8.5, which reveals that, for three 
mutually conjugate rays (and their corresponding 
diffracted beams), only one inter-ray angle can be 
very small; the other two angles must be substantially 
larger. This immediately accounts for the visually 
apparent one-dimensional clustering of reflections 
along the arcs of conics and the way in which the 
most prominent densest arcs are flanked by clear 
spaces. That is, the local spatial distribution is inher- 
ently one dimensional in character, rather than two 
dimensional. Indeed, for longer CF distances the 
great majority of reflections that lie closer than some 
specified small va lue -  the spatial over laps-  lie on a 
relatively small number of conics, as illustrated in 
Figs. 8(a) and (b). 

Second, for 0 > G, the average angular separation 
of beams along a conic arc is constant for a given 
zone and a given crystal orientation, (7.3). The conics 
with the lowest angular separation (highest linear 
density) are readily picked out by eye [e.g. Figs l ( a )  
and 14] and are found to have the lowest values of 
P sin 0, as (7.3) predicts. As the crystal is reoriented 
with respect to the X-ray beam, only the values of 
sin ~, change. 

Third, the derivation of the inter-ray angle t~2 = 
A*/d*~d*2, (6.2), shows that when d* is particularly 
small, as it must be for multiples, then a~2 is par- 
ticularly large. That is, multiples (nodals) have a 
larger angular separation from their nearest neigh- 
bours; they are surrounded by a clear space that 
makes them visually apparent. An important result is 
that multiples cannot be adjacent; they must be separ- 
ated by at least one single (§ 6.4). 

Fourth, the lowest possible inter-ray angle between 
a pair of singles is A*/D .2, but is n times larger 
between a single and an n-tuple (§ 6.4). That is, the 
vast majority of all inter-ray angles below a particular 
value are associated with pairs of adjacent single rays. 
Thus as noted previously (Helliwell, 1985), the reflec- 
tions involved in energy ove r l aps - the  mul t ip les-  
form a set largely distinct, except at short CF dis- 
tances, from those involved in spatial overlaps, which 
are mostly singles. However, for CF distances such 
that similar numbers of reflections are involved in 
each category, both kinds of overlap mostly involve 
the same prominent zones. [For a demonstration, 
compare Figs. 5(c) and (d) of Helliwell (1985).] In 
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essence, spatial overlaps occur only in dense zone 
conics, each of which has an appreciable number of 
reflections, and by CHM1 for 0 <  02 a significant 
fraction of reflections in these zones are necessarily 
multiples. 

Fifth, the gaps bordering conics may be used to 
estimate D* and ;tmi, (§ 8). However, it has been 
found that a development of the method using 
gnomonic projections is even more effective (Cruick- 
shank, Carr & Harding, 1991). 

9.2. Practical implications 

One clear experimental goal is to maximize thb 
number of reflections for which precise intensities 
can be measured. Some variables that control the 
spatial density of reflections, such as V* and D*, are 
fixed by the specimen; others, like the orientation of 
the crystal, have only a relatively minor effect. The 
selection of a particular orientation may be necessary 
to minimize spatial overlaps in a particular zone (or 
for other reasons), but it has essentially no overall 
effect on the number of spatial overlaps (except in 
certain unusual cases where one cell dimension is 
very different from the other two). Some alleviation 
of spatial overlaps may be achieved by increasing 
Ami,, but this is at the expense of reducing the total 
number of stimulated RLPs and by (1.2) this number 
is proportional to ()[max- '~min). 

By far the major effects on spatial overlap come 
from the crystal-to-detector distance CF and the spot- 
to-spot resolution capability. Table 2 in § 3.4 showed 
that there was a balance, on moving the plate further 
back, between the gain from the separation of 
spatially overlapped spots and the loss of RLPs due 
to diffracted beams missing the plate. Obviously the 
optimum CF distance depends on the plate size, the 
spot-resolution capability and the cell dimensions. 
With the pea lectin parameters and a resolution capa- 
bility of 0.35 mm, when the energy overlaps are also 
considered, less than half of all stimulated RLPs are 
measurable. With doubled cell dimensions (Table 4) 
but the same 59.3 mm plate radius, less than 30% of 
the RLPs can be recovered even with 0.2 mm resol- 
ution; many beams miss the more distant plate. 

Since 0-2 mm is an ambitious resolution criterion, 
it is self evident that changes to the detector such as 
increase in size are potentially very important. Spatial 
resolution can in effect be greatly improved also by 
a superior profile-fitting algorithm that enables 
individual integrated intensities to be extracted from 
closely adjacent or partially overlapping reflections 
(Shrive, Clifton, Hajdu & Greenhough, 1990). 

There is also scope for novel detector arrangements. 
One of us (JRH) has suggested the use of a multiple 
film holder with each film separated by 10 mm or 
more in a 'toast rack' arrangement. This idea was 
based on observations (later rationalized by § 3.3) 

that the shorter-wavelength spots are predominantly 
the ones involved in the spatial overlaps around 0¢ 
and that the longer-wavelength spots are less involved 
in spatial overlaps and occur predominantly at large 
O. In the 'toast rack', the short-wavelength spots, 
although overlapped on the front film, will penetrate 
to the rear films where they will often be separated. 
The longer-wavelength singles, provided they do not 
lie in unacceptably high-density regions on arcs of 
low P sin 0, will be recorded on the front film, which 
subtends a large value of 0. The benefits of this 
arrangement have been assessed so far by computer 
simulation. It seems that it is possible to increase 
greatly the number of measurable RLPs as compared 
with the standard multiple film pack (Helliwell & 
Higashi, 1991). 

An alternative arrangement suggested by another 
of us (KM) is to use a cylindrical detector whose axis 
coincides with the incident X-ray beam. In this way 
reflections at low 0 automatically intercept the detec- 
tor at a large value of CF. 

Two caveats should be mentioned. The present 
treatment is based on an accessible region of 
reciprocal space defined by D*, hmax and hmin. In 
reality these are 'soft' limits, so that there will be a 
fuzziness in any results dependent on these param- 
eters. Our treatment concerns accessible points in the 
reciprocal lattice. Actual reflections involve intensity 
factors, with which we have not been concerned. 
Experimentally reflections may be unobserved 
because of low intensity and this makes the D* 
boundary particularly fuzzy and possibly anisotropic. 

Secondly, our theories deal with rays and diffracted 
beams as though they were geometrical lines; yet in 
practice the incident X-ray beam is not exactly 
parallel, the X-ray collimator is of finite diameter and 
the crystal may exhibit isotropic or non-isotropic 
mosaic spread. All these effects increase the area of 
the spot profile on the detector and hence diminish 
the ease with which adjacent reflections can be 
distinguished. 

Mosaic spread is often appreciable for small crys- 
tals (Andrews, Hails, Harding & Cruickshank, 1987) 
and can suddenly increase during time-resolved 
macromolecular crystallographic studies. Bartunik & 
Borchert (1989) show how the optimum Laue 
wavelength bandwidth depends strongly on the crys- 
tal mosaicity. Polychromatic neutron diffraction will 
be more prone than X-ray diffraction to spatial over- 
lap problems because of larger beam divergence. A 
knowledge of the ideal angular distribution of reflec- 
tions is nevertheless a basic requirement in such cases. 
Happily in many synchrotron Laue studies of 
macromolecular crystals by ourselves and others, the 
spots on the films are remarkably small and the addi- 
tion 6f the concept of a spot-to-spot resolution capa- 
bility to the ideal geometrical point-and-line theory 
yields very satisfactory understanding. 
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A P P E N D I X  1 
C o n i c  g e o m e t r y  

If 4' is the inclination of the zone axis to the incident 
beam and the detector is normal to the incident beam 
the conic on the detector has eccentricity e= 
sin 4'/cos 4' = tan 4' (Sommerville, 1937). More gen- 
erally, for an inclined detector e = sin u/cos 4', where 
u is the angle between the cone axis and the detector 
normal. 

When 4' < ~-/4, the conic on a normal detector is 
an ellipse. If R is the centre of the ellipse, the major 
axis R F  [Fig. 9(a)]  has length 

a = ½CF tan 24', 

where CF is the crystal-to-detector distance. The 
minor axis has length 

b = a ( 1  - e2) ~/2 = ½CF tan 24'(1 - t a n  2 4')1/2. 

[The expressions for a and b given by Amor6s et al. 
(1975), p. 102 are incorrect.] For small 0, b/a~-  
( 1 -  4'2/2). Note that, if CF is fixed, a and b are not 
independent parameters. The equation of an arbitrary 
ellipse on a flat detector may be determined by two 
parameters, 4' and an azimuthal orientation param- 
eter. Note also that the centre R of the ellipse is not 
the point of intersection S of the zone axis with the 
detector. 

The foci f~ ,f2 of the ellipse are distant 

+ae = + ½ C F  tan 24' tan 4' 

from the centre R. Geometrically, by the Dandelin 
construction (Sommerville, 1937), f~ is the point of 

contact of a sphere inscribed in the cone in front of 
the detector and f2 is the point of contact of a sphere 
escribed in the cone behind the detector. 

When 4' = rr/4, the conic is a parabola, whose focus 
is distant ½CF from the plate centre F. 

When 4' > rr/4, the conic is a hyperbola passing 
through F with eccentricity e = tan 4' > 1 and whose 
parameters are 

a = - ½ C F t a n 2 4 "  and b = a ( e 2 - 1 )  '/2. 

The asymptotic half-angle a = t an- '  (b /a )  = 
s e c  -1  (tan 4'). 

APPENDIX 2 
A c c e s s i b l e  a r e a s  o f  z o n e s  

For a given zone, the conic on a flat detector is an 
ellipse when the zone-axis inclination 4' < 45 ° and a 
hyperbola when 4' > 45 °. However, the shape of the 
accessible region of the zone plane depends on 4' in 
quite a complicated fashion. As earlier we define 
0~ = sin- '  (AminD*/2), 0,, = s in- '  (AmaxD*/2) and 
02 = s in- '  (AmaxD*/4). The latter corresponds to the 
0 at which d * / d *  = 2; for 0 > 02 some rays with inner 
points inside the external surface Se will have no 
points in the accessible region. The missing rays will 
widen the spacing between observable beams. 

We distinguish three situations. 

Case I 4' < 0,. 
Case II 0~ < 4' < 0,,,. 
Case III 4' > 0,,. 

In case I, Figs. 17(a), (b), the accessible region of 
the zone plane is a circle of diameter 2 sin 4'/Amin 
passing through the origin minus a circle of diameter 
2 sin 4'/Amax also passing through the origin. The 
accessible area is thus 

rrsin 2 4'(1/A 2 m~,-- 1/A 2 max) (A.1) 

and the number of accessible RLPs is approximately 
this area divided by A*(uvw) = P[uvw]/V.  

For small 4', the ellipse in the Laue pattern is 
practically a circle. The number of spots varies as 
4 '2/p and the linear spot density averaged over the 
whole circumference of the conic varies as 4 ' /P  since 
the circumference is proportional to 4'. At any par- 
ticular 0 on the conic the spot density is proportional 
to 02/p4'. Thus in case I conditions, a zone conic is 
densest when 4' = 0c and the local density is greatest 
for 0 near 0c. (The discussion of Fig. 14 in § 7.2 
provides some illustration of these points.) 

In case II, Figs. 17(c), (d),  the circle of diameter 
2 sin 4 ' / A m i  n is truncated for 0 > 0c by the arc of the 
circle of radius D* centred at the origin. 0¢ corre- 
sponds to an azimuthal angle ac in the zone plane 
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given by sin ac = sin 0~/sin ~. The accessible area is 

D * 2 ( T r / 2 - a c ) + ( s i n  2 6 / A 2 i . ) [ ( 2 a c -  sin 2a<)] 

-Tr sin 2 O/A 2 max • (A.2) 

The l inear  spot density along the arc of  the Laue 
conic is greatest when 0~< 0 <  02. Increase of  q~ 
lowers the density for a given zone. 

In case III, Figs. 17(e), ( f ) ,  the circle of  d iameter  
2 sin I / / / ~ m a  x is also truncated by part of  the D* circle. 
The azimuthal  angle a, ,  corresponding to 0,, is given 

~<0< 

/" x. 
I \ 

i \ \  

/ t D *  
I | 

0 J 
0 zone plane 

(a) (b) 

0c < ~< O. 

xxxx 

3 x 0~ 

(c) 

/ \ 
/ \ \  

/ \ 
/ x 

, ' \  / I k / ' ,  
,' \ t  I / /  ',°" 

0 

(d) 

2 . 

%% %% 

>Ore 

(e) 

/ x 
/ \ 

/ X 
/ k 

/ \x 

i I 
# I 

I " 3 

o 

(f) 

Fig. 17. Accessible areas of zones. Ol=2sinqS/Amax, 02= 
2 sin 4'/Ami ., 03 = D*. (a), (b) Case I, ~0 < 0¢. (c), (d) Case II, 
Oc < q,< 0,.. (e), (f) Case III, q,> 0,.. (a), (c), (e) are sections 
of the accessible region of reciprocal space in the plane of the 
incident beam and zone axis. In (b), (d), (f) the continuous 
curves indicate the accessible areas of the zones. 

by sin a, .  = sin 0 , . /s in  0. The accessible area is 

D*2(am - ac) + sin2 4,[(2a~ - sin2Otc)/ A rain2 

--(2a,.  s i n 2 a m ) /  2 - -  ~ max ] .  ( A . 3 )  

When ~b = ~ / 2 ,  the conic is a straight line, a~ = 0~, 
a,,, = 0,1 and the area becomes 

0*2(Om -- Oc)+ [(2Oc --sin 20c)/A 2 min 

-- Amax]. (3.4) - (20 , .  sin 20, , ) /  2 

In case III the l inear  spot density along the conic 
is greatest when O~ < 0 < 02 and the average angular  
separat ion between spots then has value 
3 .29(2P sin qs/D .2 V). Obviously  the separat ions are 
largest when qs = 7r/2. 

Note that if  4, is varied by rotation of  the zone 
plane about  its line of  intersection with the tangent  
plane to the Ewald spheres,  a case I orientat ion will 
contain no RLPs in common  with a case III orienta- 
tion (since the accessible areas do not overlap).  

A P P E N D I X  3 
Visible rings surrounding prominent conics 

In Fig. l ( a )  the large clear gap outside the [011 ] conic 
corresponds to the absence of  accessible RLPs 
between the h .  u = 0 and h .  u = 1 planes.  Moving out- 
wards from the nodal  spot b along the reflections of  
the [100] and []-11] zones, the eye detects a second 
ring. This corresponds to the intersection of  the plane 
h .  u = 2 with the external surface Se. For the famil ies  
of  conics radiat ing from spot b, the spots lying 
between the h .  u = 1 and h .  u = 2 intersections are 
singles with d* decreasing from D* to D * / 2  (since 
0 > 0c). On passing through the h .  u = 2 intersection, 
these [ lvv ]  conics give rise to an al ternat ion of  
doubles  and  singles, with d* for the singles and for 
the outer points of  the doubles  again decreasing from 
D*. Interleaved between the [1 vv] conics are a family  
of  [2vv] conics, which make their appearance  at the 
second ring. Other  families,  [3vv] and [3,2v,2v], start 
from the third ring, which corresponds to the h .  u = 3 
intersection. It will also be realized, by Fig. 10, that 
for 0 >  0c the number  of  reflections in each of  the 
[ lvv]  conics between the first and second rings is 
approximate ly  equal to ha l f  the m a x i m u m  order of  
the nodal  b from which they radiate. 
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Abstract 

An automatic procedure for crystal structure solution 
and refinement has been devised. It is able to take 
decisions at each critical point of the analysis by 
taking careful account of all information available at 
that point. The procedure has been implemented into 
the package UNIQUE ( C R Y S T A L S + S I R 8 8 )  and 
has been applied successfully to a wide variety of 
crystal structures. In most cases, the complete struc- 
ture is recovered and refined without any user inter- 
vention. R values usually lie in the range 0.08-0.15. 

1. Introduction 

Direct methods are today the most powerful method 
for solving crystal structures up to medium com- 
plexity. Programs usually stop with one or more sets 
of atomic coordinates selected by suitable figures of 
merit (FOM's).  The chemical significance of each 
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trial solution is then checked via atomic connectivity 
tables. Such analyses may be inconclusive when: (i) 
no prior information about the molecule is available; 
(ii) the map is uninterpretable because some atoms 
have been missed, false peaks are present or the 
molecular geometry is distorted in some way; (iii) an 
expected molecular fragment is recognized in the 
electron-density map but is shifted with respect to its 
correct position. 

In each case structure-factor (SFC) and least- 
squares (LSQ) calculations together with Fourier 
(FOUR) methods provide an essential assessment of 
a trial solution and a powerful tool for the recovery 
of the complete structure from a partial one. Preparing 
data for SFC, LSQ and FOUR calculations is straight- 
forward but tiresome and accompanied by the risk 
of user errors. Decisions have to be taken about: (a) 
reliability of the trial solution; (b) recognition of 
special atomic positions; (c) special procedures for 
hemimorphic space groups; (d) selection of a subset 
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